18.06 MIDTERM 3

December 6, 2019 (50 minutes)

Please turn cell phones off completely and put them away.
No books, notes, or electronic devices are permitted during this exam.
You must show your work to receive credit. JUSTIFY EVERYTHING.
Please write your name on ALL pages that you want graded (those will be the ones we scan).
The back sides of the paper will NOT be graded (for scratch work only).
Do not unstaple the exam, nor reorder the sheets.
Problem 1 has 5 parts, Problem 2 has 5 parts, Problem 3 has 5 parts.

NAME:

MIT ID NUMBER:

RECITATION INSTRUCTOR:

SCRATCH WORK

THIS SIDE WILL NOT BE GRADED

PROBLEM 1

(1) Choose three real numbers a, b, c such that the matrices:

$$
A=\left[\begin{array}{ll}
1 & a \\
1 & 1
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & b \\
1 & 1
\end{array}\right] \quad C=\left[\begin{array}{cc}
1 & c \\
1 & 1
\end{array}\right]
$$

have the properties that:

- A has two distinct real eigenvalues
- B has two identical real eigenvalues (i.e. a repeated eigenvalue)
- C has two complex (non-real) eigenvalues

In each of these three cases, compute the eigenvalues in question. Show your work. (15 pts)

SCRATCH WORK

THIS SIDE WILL NOT BE GRADED

NAME:

(2) Diagonalize A (the matrix with distinct real eigenvalues from part (1)), i.e. write it as:

$$
A=V D V^{-1}
$$

where V is an invertible 2×2 matrix and D is a diagonal 2×2 matrix. Explain your reasoning in figuring out V and D, and detail the step-by-step process. (10 pts)

SCRATCH WORK

THIS SIDE WILL NOT BE GRADED

NAME:

(3) Recall that B has a repeated eigenvalue λ (which you should have computed in part (1)).

- Compute the eigenspace of λ, i.e. the subspace of vectors $\mathbf{v} \in \mathbb{R}^{2}$ such that $B \mathbf{v}=\lambda \mathbf{v}$.
- Use this to compute the geometric multiplicity of λ.
- Is B diagonalizable?

SCRATCH WORK

THIS SIDE WILL NOT BE GRADED

PROBLEM 2

Throughout this problem, the matrix A has the following Singular Value Decomposition:

$$
A=\underbrace{\frac{1}{5}\left[\begin{array}{cc}
3 & 4 \\
-4 & 3
\end{array}\right]}_{U} \underbrace{\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]}_{\Sigma} \underbrace{\frac{1}{3}\left[\begin{array}{ccc}
1 & x & 2 \\
2 & 2 & y \\
2 & -1 & -2
\end{array}\right]}_{V^{T}}
$$

where the matrices U and V are orthogonal and x, y denote two mystery real numbers.
(The matrices U and V include the prefactors $\frac{1}{5}$ and $\frac{1}{3}$, so the top-left entry of U is $\frac{3}{5}$ and the top-left entry of V is $\frac{1}{3}$. Recall that orthogonal means that $U^{T} U=I_{2}$ and $V^{T} V=I_{3}$)
(1) What are the values of x, y, based on the information provided? Explain how you know. (5 pts)
(2) Fill in the blanks (no explanation needed):

- the rank of the matrix A is \qquad (5 pts)
- the eigenvalues of $A^{T} A$ are \qquad , and those of $A A^{T}$ are \qquad (5 pts)
- a non-zero eigenvector of $A^{T} A$ is \qquad (any one eigenvector will suffice) (5 pts)

Hint: the answers to the blanks above are all encoded in the SVD of A

SCRATCH WORK

THIS SIDE WILL NOT BE GRADED

NAME:

(3) Write A as a sum of two rank 1 matrices (it suffices to write these rank 1 matrices as a column times a scalar times a row, e.g. $\mathbf{u} \cdot \sigma \cdot \mathbf{v}^{T}$, you don't need to explicitly multiply the column, scalar and row out).
(5 pts)
(4) Compute the pseudo-inverse A^{+}of A, and explain how you got it (your answer for A^{+} should be a 3×2 matrix with explicit numbers as entries).
(5 pts)

SCRATCH WORK

THIS SIDE WILL NOT BE GRADED

NAME:

(5) Use A^{+}to compute a least squares solution to $A \mathbf{v}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ (i.e. you must find a vector $\mathbf{v} \in \mathbb{R}^{3}$ such that $A \mathbf{v}$ is as close as possible to $\left[\begin{array}{l}1 \\ 1\end{array}\right]$; explain which formula you are using).

SCRATCH WORK

THIS SIDE WILL NOT BE GRADED

PROBLEM 3

(1) Compute the eigenvalues λ_{1}, λ_{2} and eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ of the following matrix:

$$
E=\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

In this problem only, you are allowed to guess the eigenvalues and eigenvectors without going through the whole process of working them out, since they are quite simple. (10 pts)
(2) Fill in the blank: \mathbf{v}_{1} and \mathbf{v}_{2} are \qquad because the matrix E is symmetric.
(5 pts)

SCRATCH WORK

THIS SIDE WILL NOT BE GRADED

NAME:

For the remainder of this problem, consider the following setting: Alice and Bob run into Mr. Papadopoulos, who randomly chooses a letter among α, β, γ with equal probability.

- If Mr. Papadopoulos chooses α, then he gives Alice $\$ 9$ and Bob $\$ 0$
- If Mr. Papadopoulos chooses β, then he gives Alice $\$ 0$ and Bob $\$ 9$
- If Mr. Papadopoulos chooses γ, then he gives Alice $\$ 3$ and Bob $\$ 6$

Consider the random variables $X_{A}=$ the amount of money Alice gets, $X_{B}=$ the amount of money Bob gets, and put them in a random vector:

$$
\mathbf{X}=\left[\begin{array}{l}
X_{A} \\
X_{B}
\end{array}\right]
$$

(3) Compute the expected value (a.k.a. the mean) $E[\mathbf{X}]$.

Recall that the expected value $E[X]$ of any random variable (or vector) X is the average of the possible values that X can take, weighted by the probabilities of these possible values.

SCRATCH WORK

THIS SIDE WILL NOT BE GRADED

NAME:

(4) Compute the covariance matrix K of the random variables X_{A} and X_{B}.

Recall that the covariance of any two random variables Y and Z is the expected value:

$$
E[(Y-E[Y])(Z-E[Z])]
$$

The covariance matrix K of X_{A} and X_{B} is the 2×2 matrix whose entries are the covariances of the pairs of variables $\left(X_{A}, X_{A}\right),\left(X_{A}, X_{B}\right),\left(X_{B}, X_{A}\right),\left(X_{B}, X_{B}\right)$. In terms of the vector \mathbf{X} whose components are X_{A} and X_{B}, the covariance matrix K is given by the formula:

$$
K=E\left[(\mathbf{X}-E[\mathbf{X}])(\mathbf{X}-E[\mathbf{X}])^{T}\right]
$$

SCRATCH WORK

THIS SIDE WILL NOT BE GRADED

NAME:

(5) Harder question: find two linear combinations of X_{A} and X_{B} (call these linear combinations Y and Z) such that the covariance of Y and Z is 0 . What are the variances of Y and Z ? Explain your reasoning.

SCRATCH WORK

THIS SIDE WILL NOT BE GRADED

